微调基于torchvision 0.3的目标检测模型
微调基于torchvision的目标检测模型是一种常见的用于特定任务定制预训练模型的方法。torchvision中提供了一些预训练的目标检测模型,比如Faster R-CNN、Mask R-CNN等,本文将以Faster R-CNN为例,简要介绍如何进行微调。
前提准备
安装PyTorch和torchvision: 请确保已经安装了PyTorch和torchvision,并且版本与您的开发环境兼容。
pip install torch torchvision
准备数据集: 您需要将自己的数据集格式化,以适应PyTorch的数据加载方式。常用的数据格式包括COCO或Pascal VOC格式。
微调步骤
1. 导入必要的库
import torch
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
from torchvision.transforms import functional as F
2. 创建自定义数据集类
您需要创建一个符合torchvision格式的数据集类。这个类需要继承自torch.utils.data.Dataset
,并实现__getitem__
和__len__
方法。
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, transforms=None):
self.transforms = transforms
# Initialize dataset, you need to load your images and bounding boxes
def __getitem__(self, idx):
# Load image and targets (bbox, labels, etc.)
image = ... # Load image
target = {} # Format your target as a dict
target['boxes'] = ... # List of boxes
target['labels'] = ... # Corresponding labels for each box
if self.transforms:
image, target = self.transforms(image, target)
return image, target
def __len__(self):
# return the size of your dataset
return ...
3. 定义数据转换
def get_transform(train):
transforms = []
transforms.append(F.to_tensor)
if train:
transforms.append(F.random_horizontal_flip(0.5))
return torchvision.transforms.Compose(transforms)
4. 加载预训练模型并修改
# Load a pre-trained model for classification and return only the features
backbone = torchvision.models.mobilenet_v2(weights="DEFAULT").features
backbone.out_channels = 1280
# Generate anchors
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),) * 5)
# Define the region of interest (RoI) pooling method
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
output_size=7,
sampling_ratio=2)
# Create the entire model instance
model = FasterRCNN(backbone,
num_classes=91,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
# Replace the classifier head with a new one (this example has 2 classes)
num_classes = 2 # including background
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
5. 训练模型
# Define training parameters
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
# Construct the dataset and dataloader
dataset = CustomDataset(transforms=get_transform(train=True))
dataset_test = CustomDataset(transforms=get_transform(train=False))
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=utils.collate_fn)
dataloader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, shuffle=False, num_workers=4, collate_fn=utils.collate_fn)
# Set an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
# Train for some epochs
num_epochs = 10
for epoch in range(num_epochs):
# train for one epoch
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
lr_scheduler.step()
# evaluate on the test dataset
evaluate(model, dataloader_test, device=device)
通过这种方法,您可以微调一个预先训练的目标检测模型,以便在您的自定义数据集上获得更好的性能。记得根据任务的要求调整模型结构和训练参数。