提示信息

微调基于torchvision 0.3的目标检测模型

小忧伤 已关注

微调基于torchvision的目标检测模型是一种常见的用于特定任务定制预训练模型的方法。torchvision中提供了一些预训练的目标检测模型,比如Faster R-CNN、Mask R-CNN等,本文将以Faster R-CNN为例,简要介绍如何进行微调。

前提准备

  1. 安装PyTorch和torchvision: 请确保已经安装了PyTorch和torchvision,并且版本与您的开发环境兼容。

    1. pip install torch torchvision
  2. 准备数据集: 您需要将自己的数据集格式化,以适应PyTorch的数据加载方式。常用的数据格式包括COCO或Pascal VOC格式。

微调步骤

1. 导入必要的库

  1. import torch
  2. import torchvision
  3. from torchvision.models.detection import FasterRCNN
  4. from torchvision.models.detection.rpn import AnchorGenerator
  5. from torchvision.transforms import functional as F

2. 创建自定义数据集类

您需要创建一个符合torchvision格式的数据集类。这个类需要继承自torch.utils.data.Dataset,并实现__getitem____len__方法。

  1. class CustomDataset(torch.utils.data.Dataset):
  2. def __init__(self, transforms=None):
  3. self.transforms = transforms
  4. # Initialize dataset, you need to load your images and bounding boxes
  5. def __getitem__(self, idx):
  6. # Load image and targets (bbox, labels, etc.)
  7. image = ... # Load image
  8. target = {} # Format your target as a dict
  9. target['boxes'] = ... # List of boxes
  10. target['labels'] = ... # Corresponding labels for each box
  11. if self.transforms:
  12. image, target = self.transforms(image, target)
  13. return image, target
  14. def __len__(self):
  15. # return the size of your dataset
  16. return ...

3. 定义数据转换

  1. def get_transform(train):
  2. transforms = []
  3. transforms.append(F.to_tensor)
  4. if train:
  5. transforms.append(F.random_horizontal_flip(0.5))
  6. return torchvision.transforms.Compose(transforms)

4. 加载预训练模型并修改

  1. # Load a pre-trained model for classification and return only the features
  2. backbone = torchvision.models.mobilenet_v2(weights="DEFAULT").features
  3. backbone.out_channels = 1280
  4. # Generate anchors
  5. anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
  6. aspect_ratios=((0.5, 1.0, 2.0),) * 5)
  7. # Define the region of interest (RoI) pooling method
  8. roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
  9. output_size=7,
  10. sampling_ratio=2)
  11. # Create the entire model instance
  12. model = FasterRCNN(backbone,
  13. num_classes=91,
  14. rpn_anchor_generator=anchor_generator,
  15. box_roi_pool=roi_pooler)
  16. # Replace the classifier head with a new one (this example has 2 classes)
  17. num_classes = 2 # including background
  18. in_features = model.roi_heads.box_predictor.cls_score.in_features
  19. model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

5. 训练模型

  1. # Define training parameters
  2. device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
  3. model.to(device)
  4. # Construct the dataset and dataloader
  5. dataset = CustomDataset(transforms=get_transform(train=True))
  6. dataset_test = CustomDataset(transforms=get_transform(train=False))
  7. data_loader = torch.utils.data.DataLoader(
  8. dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=utils.collate_fn)
  9. dataloader_test = torch.utils.data.DataLoader(
  10. dataset_test, batch_size=1, shuffle=False, num_workers=4, collate_fn=utils.collate_fn)
  11. # Set an optimizer
  12. params = [p for p in model.parameters() if p.requires_grad]
  13. optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
  14. # Train for some epochs
  15. num_epochs = 10
  16. for epoch in range(num_epochs):
  17. # train for one epoch
  18. train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
  19. # update the learning rate
  20. lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
  21. lr_scheduler.step()
  22. # evaluate on the test dataset
  23. evaluate(model, dataloader_test, device=device)

通过这种方法,您可以微调一个预先训练的目标检测模型,以便在您的自定义数据集上获得更好的性能。记得根据任务的要求调整模型结构和训练参数。

    遇到难题? "AI大模型GPT4.0、GPT" 是你的私人解答专家! 点击按钮去提问......
小忧伤 关注 已关注

最近一次登录:2024-11-09 17:27:03   

暂时还没有签名,请关注我或评论我的文章
×
免费图表工具,画流程图、架构图