提示信息

自回归Transformer模型示例代码分享

甜到悲伤 已关注

自回归Transformer是一类用于生成任务的模型,例如文本生成,各种自然语言处理任务等。以下是一个简单的自回归Transformer模型的示例代码,使用PyTorch框架来实现。这个示例以字符级别文本生成任务为例。

  1. import torch
  2. import torch.nn as nn
  3. import torch.optim as optim
  4. from torch.nn.functional import log_softmax
  5. class SimpleTransformer(nn.Module):
  6. def __init__(self, vocab_size, d_model, nhead, num_layers, dropout=0.5):
  7. super(SimpleTransformer, self).__init__()
  8. self.embedding = nn.Embedding(vocab_size, d_model)
  9. self.transformer = nn.Transformer(d_model, nhead, num_layers, num_layers, dim_feedforward=512, dropout=dropout)
  10. self.fc_out = nn.Linear(d_model, vocab_size)
  11. def forward(self, src, tgt, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask):
  12. src_emb = self.embedding(src) * math.sqrt(d_model)
  13. tgt_emb = self.embedding(tgt) * math.sqrt(d_model)
  14. output = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, src_padding_mask, tgt_padding_mask)
  15. return self.fc_out(output)
  16. def generate(self, src, max_len, start_symbol, src_mask, src_padding_mask):
  17. src_emb = self.embedding(src) * math.sqrt(d_model)
  18. memory = self.transformer.encoder(src_emb, src_mask, src_padding_mask)
  19. ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(src.device)
  20. for i in range(max_len-1):
  21. tgt_emb = self.embedding(ys) * math.sqrt(d_model)
  22. out = self.transformer.decoder(tgt_emb, memory, None, None)
  23. prob = self.fc_out(out[:, -1])
  24. _, next_word = torch.max(prob, dim=1)
  25. next_word = next_word.item()
  26. ys = torch.cat([ys, torch.ones(1, 1).fill_(next_word).type(torch.long).to(src.device)], dim=1)
  27. if next_word == end_token:
  28. break
  29. return ys
  30. # 超参数设置
  31. vocab_size = 100 # 例如100个字符
  32. d_model = 512
  33. nhead = 8
  34. num_layers = 6
  35. max_len = 100
  36. start_token = 0
  37. end_token = 1
  38. # 模型和优化器
  39. model = SimpleTransformer(vocab_size, d_model, nhead, num_layers)
  40. optimizer = optim.Adam(model.parameters(), lr=0.0001)
  41. criterion = nn.CrossEntropyLoss()
  42. # 训练循环和样本数据(需根据具体任务调整数据集)
  43. for epoch in range(10): # 训练10个epoch
  44. for batch, (src, tgt) in enumerate(train_data):
  45. src_input = src
  46. tgt_input = tgt[:, :-1]
  47. tgt_output = tgt[:, 1:]
  48. src_mask = model.transformer.generate_square_subsequent_mask(src_input.shape[0]).to(src.device)
  49. tgt_mask = model.transformer.generate_square_subsequent_mask(tgt_input.shape[0]).to(tgt.device)
  50. src_padding_mask = src_input == padding_idx
  51. tgt_padding_mask = tgt_input == padding_idx
  52. optimizer.zero_grad()
  53. output = model(src_input, tgt_input, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask)
  54. loss = criterion(output.reshape(-1, vocab_size), tgt_output.reshape(-1))
  55. loss.backward()
  56. optimizer.step()
  57. if batch % 100 == 0:
  58. print(f"Epoch {epoch}, Step {batch}, Loss: {loss.item()}")
  59. # 使用模型进行生成
  60. generated_symbols = model.generate(src_input, max_len, start_token, src_mask, src_padding_mask)
  61. print("Generated sequence:", generated_symbols)

请根据您的数据集准备train_data,并确保调整vocab_size和其他超参数以适应具体任务。这段代码仅是基本结构,用于展示如何设置一个自回归Transformer进行简单的字符级生成任务。Use appropriate data and preprocessing for better results on specific tasks.

    遇到难题? "AI大模型GPT4.0、GPT" 是你的私人解答专家! 点击按钮去提问......
甜到悲伤 关注 已关注

最近一次登录:2024-11-20 23:37:00   

暂时还没有签名,请关注我或评论我的文章
×
免费图表工具,画流程图、架构图